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Introduction  Our compact, solid-state scintillation probes are widely used as HPLC / GC radiation
detectors for quality assurance in PET/nuclear medicine research labs and radio-pharmacies. The
detector probes operate in AC-coupled, pulse-counting mode, with a threshold discriminator to
exclude noise and to minimize baseline fluctuation and drift. 

The threshold discriminator is followed by an analog  ratemeter to produce a voltage signal that is
proportional to the time-rate of photon-induced pulses which exceed the pre-set threshold. Using
this scheme, the ability to discern and evaluate the smallest radio-chromatography peaks – the
minimum detectable signal – is governed by fluctuations in the base-line from ambient radiation
background in the lab which, in turn, requires that the detector probe be well shielded so that it
‘sees’ only the radiation emanating from a loop of flow-tubing placed in tight proximity to the probe.

While this scheme is optimum for detection at low-to-moderate levels of radioactivity encountered
in a typical quality-assurance radio-assay, pulse-counting detectors generally suffer from saturation
effects due to counting system dead-time when exposed to high levels of radioactivity.  In an effort
to broaden the potential application of our scintillation detector products, we are engaged in an
ongoing development program to enhance detector system linearity and dynamic range by
reducing saturation effects at the ‘high-end’ while preserving system sensitivity at the ‘low end’. 

Stress-Testing at high count-rates To facilitate our development, we use home-made random
pulse generators   operating in parallel. Each pulse generator drives its own  light-emitting diode1

to simulate scintillation pulses (pulse width ~ 200 nsec) from a CsI(Tl) scintillator crystal. The fixed-
amplitude, random light-pulses are pre-set to match the  511 KeV principal peak in our 1 cm3

crystal,  and are directed at a 1 cm  Si PIN diode + charge-integrating preamplifier  (to include the2

effects of electronic noise inherent in a room-temperature semiconductor diode detector) all placed
inside a light-tight enclosure to emulate our scintillation detector probe’s ‘front end’.   Each
generator delivers  pulses at Poisson random  intervals with an adjustable mean rate covering a
range of ~100 pulses per second up  to ~125K pulses per second. A pair of  generators  can
produce a mean rate up to  ~250K pulses per second, providing a convenient, readily-controllable
source of detector system excitation over a wide range of count-rates, without having to handle
large quantities of radioactive material. The ‘Poisson-ness’ of our random pulse generators was
validated by recording the distribution of inter-pulse waiting times for various mean  rates, using
a calibrated  time-to-amplitude converter plus multi-channel analyzer.

Extending Dynamic range   In a radiation counter, input pulses which exceed a pre-determined
threshold generate corresponding output pulses of fixed amplitude  which, in turn, are either
counted digitally or time-averaged in an analog  rate-meter circuit.  A different solution, now under
development,  entails giving up on  the notion of pulse ‘counting’, per se, and replacing the
standard threshold discriminator with a new circuit combining the functions of a threshold
discriminator, a pedestal generator, and a linear gate .  The sketch below compares the input-2

output characteristic of a standard discriminator  versus our new circuit. 

The output of a standard discriminator circuit is zero for input pulses less than the threshold, and
steps to a fixed, pre-determined value for input pulses which exceed the threshold.  In the new
circuit, the output is again zero for input pulses which are less than the threshold; when the input
pulse exceeds the threshold, the output steps,  then linearly follows the amplitude of the input.

The analog time-averaged (analog  rate-meter) output signal from this circuit is proportional to the
time-average of energy absorbed (i.e., dose-rate) in the detector probe.  The new circuit retains
the noise-reducing and drift-reducing advantages of a standard threshold discriminator at low count
rates, but with the added advantage that integrated energy/amplitude information contained in

kmje
Typewritten Text
Abstract 001



 Knoll, Glenn F; Chapter 3, sec. VII in  Radiation Detection and Measurement;  John3

Wiley and Sons New York, 1979. 

signal pulses which overlap and ‘pile up’  is preserved
over a substantially  greater range of input
excitations. Our useful range now extends well
beyond the point where a standard discriminator’s
output has ‘flat-lined’.
 
The plots below compare three different detector
outputs versus input count rate excitation. The
vertical scales are normalized so that all the curves
are tangent at low input count rates.  In our present
system, ‘busy time’ for a single event is governed by
the shaping-amplifier’s pulse-width, which is on the
order of ~25 micro-seconds – in our case a
necessary but reasonable compromise between low
dead-time and low noise floor.  A wider system band-
width (shorter shaping time-constant) would allow a
narrower pulse which, in turn, would yield a higher
maximum count rate, but that would come at the cost
of a higher noise floor, requiring a correspondingly
higher threshold setting, potentially compromising
performance for lower-energy photon-emitters.

As shown below, the digital output count-rate peaks
at ~17 kHz for 50 kHz input, then gradually declines
due to a ‘paralyzing dead-time’ component  and3

finally plateaus at  ~13 kHz . However, the analog-
rate-meter – or analog average – of that same time-
over-threshold discriminator signal has a significantly
greater dynamic range, since the discriminator’s output pulses  vary in duration, staying ‘high’ when
responding to multiple, overlapping input pulses as long as they are of sufficient amplitude to
exceed the pre-set threshold.  Of course the time-over-threshold analog-rate-meter’s output
eventually saturates as well, but with a gradual and  asymptotic,  ‘non-paralyzing’ characteristic.

New Circuit Our  new discriminator circuit significantly extends the useable range of the detector.
With this circuit, saturation effects  begin to set in at ~150 kHz input count-rate, but the analog
output is monotonic –  still increasing – up to the present limit of our test apparatus.  

The simplest, most  common means
to achieve detector system DC base-
line stability – absolutely vital at low
count-rates –  is to employ capacitive
AC coupling with base-line restoration
at the input to the discriminator. That,
however,  combined with the shaping
amplifier’s constrained bandwidth,
leads to  a  loss of ‘DC-average’
information, ultimately causing the
apparent signal drop-off at high count
rates.

We are currently revisiting many of
our prior circuit design assumptions.
At the time of this submission, we are
seeing preliminary, albeit intriguing
and very encouraging test-bench
results suggesting there is reason to
expect significant improvement over
the results posted here.
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