Li Yongjian Shanghai Institute of Nuclear Research, Academia Sinica P.O. Box 8204, Shanghai 201849 China

The SINR facility was initially installed in 1964, a 1.2m classical fixed energy cyclotron (proton MeV, deuteron 16 MeV, Alpha 32 MeV) and modified 1985 into 1.38 isochronous, multiparticle with variable energy: proton up to 16 MeV, $20 \,\mu\text{A}$ external beam intensity; deuteron up to 16 MeV, $30 \,\mu\text{A}$ and alpha up to 32 MeV, $18 \,\mu\text{A}$.

Cyclotron production of radiosotopes and radiopharmaceuticals program has been preferentially undertaken hardly since the establishment of cyclotron by the grants of Academia Sinica and National Nature Science Foundation Commission.

The radioisotopes have been produced in connection with some strong points:

- 1. for supplying its neighbourhood with a wide spectrum of short-lived radioisotopes when it is not available.
- 2. in some particular circumstances the cyclotron-produced radioisotopes are used exclusively
- 3. to meet the needs of nuclear medicine for special radioisotopes of ideal nuclear characteristics and usefulness (Table I).²⁻³

The pertinent characteristics of cyclotron-produced radioisotopes towards nuclear medicine have made it most expedient for radiopharmaceutical production. Consequently, both inorganic⁴⁻¹¹ and organic¹²⁻¹⁸ radiopharmaceutical preparations have been forwarded (Tables II, III). And through their production the establishment of irradiation facility, targetry, fast radiochemistry, quality control as well as radiopharmacology have been carried out. Some of these radiopharmaceutical preparations, after passing the critical pharmacological examinations, have been supplied to hospitals for clinical uses.⁹⁻²⁰

Table I Radioisotopes Produced at SINR Cyclotron

Nuclid	le T _{1/2}	Nuclear reaction used	Projectile energy (McV)	Production rate (mCi/mAh)	Applications*
² Be	53.3d	⁷ Li(p,n) ⁷ Be	8	80	Biomed. Agr.
¹¹ C	20.3m	$^{11}B(p,n)^{11}C$	8	5000	Org. Rph.
²² Na	2.6a	24 Mg(d α) 22 Na	13.4	2	PAT
²⁴ Na	15.0H	23 Na(d,p) 24 Na	13.4	80	Biomed.
⁴² K	12.4h	41 K(d,p) 42 K	13.4	60	Biomed.
⁵⁴ Mn	313d	56 Fe($d\alpha$) 54 Mn	16	5	Nucl. Phys.
⁵⁶ Co	77.3d	⁵⁶ Fe(d,n) ⁵⁶ Co	13.4	10	Envir.
⁵⁷ Co	270d	⁵⁶ Fe(d,n) ⁵⁷ Co	7.5	3	NM, MB
⁶¹ Cu	3.4h	⁶⁰ Ni(d,n) ⁶¹ Cu	16	600	Nucl. Phys.
⁶¹ Cu	3.4h	59 Co(α ,2n) 61 Cu	32	4000	Nucl. Phys.
⁶⁷ Ga	78h	$Zn(d,xn)^{67}Ga$	16	320	NM imag.
⁶⁸ Ga	68.3m	⁶⁸ Ge e.c. ⁶⁸ Ga			NM. Gener.
⁶⁸ Ge	287d	66 Zn(α ,2n) 68 Ge	32	3	
⁷⁴ As	17.8h	$Ge(d,xn)^{74}As$	13.4	80	Agr. pharm.
⁷⁷ Br	57h	75 As(α ,2n) 77 Br	32	90	NM. Org. Rph.
85 Sr	64d	85 Rb(d.2n) 85 Sr	13.4	15	Biomed. Tox.
¹¹¹ In	67.2h	109 Ag(α ,2n) 111 In	32	200	NM. imag.
123 I	13.3h	121 Sb(α ,2n) 123 I	32	300	NM. imag.

Table I (cont'd)

Nuclide T1,	/2 Nuclear reacti used	on Projectile energy (MeV)	Production rate (mCi/mAh)	Applications*
^{197m} Hg 24h ²⁰¹ T1 74h	¹⁹⁷ Au(d,2n) ¹⁹⁷ t ²⁰³ T1(p,3n) ²⁰¹ 1	ⁿ Hg 16 Pb 28	100 390	NM NM imag.
²⁰³ Pb 52.1 ²⁰³ Pb 52.1	(F)/	e.c. ²⁰¹ T1 b 28 Pb 15	2400 180	NM imag. Biomed. Tox.

* Org. Rph. - organic radiopharmaceutical

Nucl. phys. - nuclear physics

NM - nuclear medicine

pharm - pharmaceutical

Envir. - environment protection

Gener. - radioisotope generator

PAT - positron annihilation technology

NM imag. - nuclear medical imaging

TABLE II - Inorganic Radiopharmaceuticals

Nuclide	Radiopharmaceutical Preparation	Application
²⁴ Na	Sodium chloride injection	Sodium metabolism
⁷⁷ Br	Sodium bromide injection	Extracellular fluid volume
⁶⁷ Ga	Gallium citrate, isotonic injection	Tumor localization
⁸⁵ Sr	Strontium chloride injection	Bone scan
¹¹¹ In	Indium chloride injection	Bone marrow scan
	Indium bleomycin injection	Tumor scan
	DTPA-conjugated monoclonal antibody of hFbg	Thrombosis localization
123 _T	Sodium iodide, isotonic injection	Thyroid scan
²⁰¹ T1	Thallium chloride injection	Myocardium scan

TABLE III - Organic Radiopharmaceuticals

Nuclide	Radiopharmaceutical	Application
¹¹ C	Amino-cyclopentane-carboxylic acid	Pancreas and tumor scan
¹¹ C	Valine	Pancreas scan
¹¹ C	Leucine	Pancreas scan
¹¹ C	Benzoic acid	Renal scan
¹¹ C	Propionic acid	Myocardium scan
¹¹ C	Glucose	Sugar metabolism
_		Brain function
⁷⁷ Br	DOPA	Dopamine receptor scan
77 Br	Tetraacetyl-3-deoxy-glucose	Brain function

^{123}I	Human fibrinogen		
123 ₁ 123 ₁	O-Hippuran Iodohexadecanoic acid	Heart scan Thrombosis scan	
		Renal function scan	

REFERENCES

- 1. Hongjun Chan, Status report on the INR cyclotron, Tenth International Conference on Cyclotron and Their Applications, East Lansing (1984) p. 449.
- 2. Yongjian Li, The Cyclotron Production and Tritium Labelling of Biomolecules in SINR, 15th Japan Conference on Radioisotopes, Tokyo (1981) p. 264.
- Yongjian Li, Cyclotron Production of Radionuclides, Second China Japan Symposium on Accelerator for Nuclear Science and Their Applications, Lanchou (1983) p. 418.
- 4. Borong Bao, Xichang Shi, Cyclotron Production of Radioisotope ¹¹¹ In for Medical Uses, He Jishu (Nuclear Technique) <u>2</u>:(2)42(1979).
- 5. Shengyan Chen, Liufang Zhang, et al., Cyclotron production of ⁶⁷Ga-Gallium Citrate Injection, He Jishu (Nuclear Technique) <u>3</u>:(3)15(1980).
- Borong Bao, Luona Chen, et al., Preparation of Radioisotope ⁶¹Cu, He Jishu (Nuclear Technique) 6:55(1983).
- 7. Shengbao Qian, Rongzhen Cao, et al, Preparation of Carrier-free 85 Sr from Fused Rubidium Chloride Target for Medical Uses, He Jishu (Nuclear Technique) 5:37(1982).
- 8. Yongjian Li, Qixun Sun, et al., Development of Na¹²³I Pharmaceutical from Antimony Target, J. Label. Compds. Radiopharm. <u>19</u>:1358(1984).
- 9. Zhilun Xue, Borong Bao, Cyclotron Production of Carrier-free ²⁰³ Pb He Huaxue Yu Fangshe Huaxue (Nuclear Chemistry and Radiochemistry), No. <u>4</u>, 217(1984).
- 10. Chungpeng Wang, Jiading Zhang, et al., Cyclotron Production of ²⁰¹T1 for Medical Use, Ann. Report SINR <u>4</u>:214(1985).
- 11. Yongjian Li, Jiexi Lu, The Production of Bromine-77 Using GaAs Target of High Melting Point, Ann. Report SINR 5:38(1985).
- 12. Yifang Ye, Ruoling Hua, et al., Quick Syntheses of ¹¹C-labelled Valine, Leucine and Amino-cyclopentane-carboxylic Acid, He Jishe (Nuclear Technique) <u>4</u>:44(1981).
- 13. Yun Wang, Zhentang Zhou, et al., Quick Syntheses of ¹¹C-carboxyl Labelled Propionic Acid and Benzoic Acid, Yunzineng Kexue Jishe (Atomic Energy Science Technique) No. 3353(1983).
- Yongjian Li, Qixun Sun, et al., In-vivo Distribution and Thyroid Imaging of I-123 Nal, Nuclear Medicine and Biology <u>IV</u>:3208(1983) Pergamon Press, Paris.
- 15. Wengqiao Chen, Yongjian Li, A Rapid Biological Synthetilcal Method for ¹¹C D-Glucose, Ann. Report SINR <u>1/2</u>:124(1982).

- 16. Yongjian Li, Yongjian Li, Lixing Lang, Syntheses of Radioiodine (Bromine) Labelled 3-Deoxy-glucose Derivatives, Proceedings of the Chinese Academ of Medical Sciences and Peking Union Medical College 3:No. 3 Supplement I, 135(1988).
- 17. Ruoling Hua, Weiyu He, et al., Syntheses of 16-Br-9-hexadecennoic Acid and ¹³¹ I(¹²³ I)-16-I-9-hexadecennoic Acid, J. Chinese Nuclear Medicine, 4:102(1984).
- 18. Jiayu Xue, Yongjian Li, The Application of Chloroglycouril in Radioiodination of Protein, J. Label. Compds. Radiopharm. 23:1265 (1986).
- 19. INJECTIO GALLII(67 Ga) CITRATIS, Standard of Public Health Ministry, PRC, WS 1-1-79.
- 20. INJECTIO NATRII IODIDI (123 I), Standard of Public Health Ministry, PRC, WS 1-147-84.