Using the Neutron Flux from p,n Reactions for n,p Reactions on Medical Cyclotrons

Jonathan Siikanen^{a,b} and Anders Sandell^b

^aLund University, Medical Radiation Physics, Barngatan 2:1, 221 85 Lund, Sweden ^bUniversity Hospital in Lund, Radiation Physics, Klinikgatan 7, 221 85 Lund, Sweden

The formation of the isomeric pair 58 Co^{m,g} can be reached via the 58 Ni(n,p), 59 Co(n,2n), 59 Co(p,pn), 58 Fe(p,n), 57 Fe(d,n), 55 Mn(a,n), and 61 Ni(p,a) reactions. Natural nickel (68.1% 58 Ni) foils were placed behind a [18 F]Flouride water target to produce 58 Co[**1**] ($T_{1/2}$ =70.86 d, β^+ =14.9%, Ey=811 keV, 99.4%) through the 58 Ni(n,p) 58 Co reaction. The water target is mounted on a MC 17 Scanditronix cyclotron (15.5 MeV protons on water). To quantify the 58 Co activity the irradiated foils were measured after four days (after EOB) for a full conversion of the co-produced metastable state 58m Co ($T_{1/2}$ =9 h).

Nickel foils (\sim 20x20 mm) with different thicknesses were placed between the water cooling tubes on the backside of the water target according to figure 3. The foils were irradiated with ejected neutrons from the $^{18}\text{O}(p,n)^{18}\text{F}$ reaction for different accumulated proton charges (μ Ah) in the water target.

So far, 58 Co-activities of about 0.1-0.15 kBq/µAh have been produced in 0.25 mm thick foils and approximately 1 kBq/µAh in a 2 mm thick foil. The 58 Co activities were quantified with an HPGe detector against a known 511 keV peak in same geometry. More results will be presented at the conference.

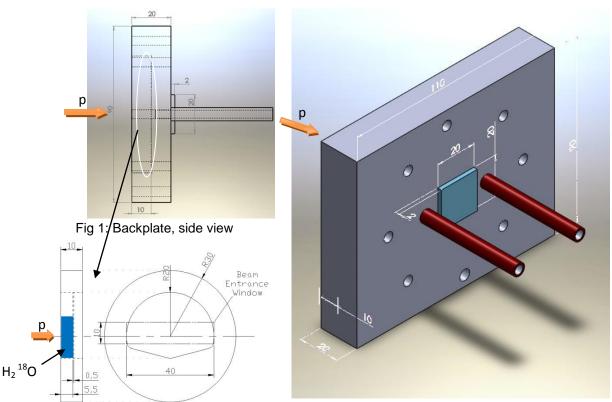


Fig 2: niobium insert

Fig 3: Backplate housing the niobium-insert with a 2 mm nickel foil on the rearside between water tubes

References:

C.E. Mellish & J.A. Payne, Nature Vol 187/275-276/1956

H.-J. Lincke, Radioanal.Nucl.Chem.,Letters 87/5/311-316/1984