PC-controlled radiochemistry system for preparation of NCA ⁶⁴Cu

Adam Rebeles R., Van den Winkel P., De Vis L., Waegeneer R. Cyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium

Due to the rapid increase of the use of nuclear medicine techniques in modern clinical diagnosis and in a selected series of therapies, researchers' efforts are focusing for the standardization and optimization of different production routes for a series of emerging radioisotopes like ⁶⁴Cu, ⁶⁷Cu, ^{114m}In, ²¹¹At.

In particular the EC/ β^+/β^- decay of ⁶⁴Cu makes it a promising candidate for both PET imaging and internal targeted radio therapy. In the last decades several groups studied different production routes like for this radio nuclide, i.e. ⁶⁴Ni(p,n), ⁶⁴Ni(d,2n), ⁶⁴Zn(d,2p). Taking into account the wider availability of the medium energy proton beam machines, the (p,n) reaction on ⁶⁴Ni seems to be the most attractive one, although ⁶⁴Zn(d,2p) may be considered as an alternative where lower activity is necessary, as it may require less investment in enriched material.

The production of large activities of ⁶⁴Cu on regular basis requires a fast and reliable chemistry system. Based on the experience gathered in the last decades in our laboratory we present here and efficient, remote controlled chemistry system for production of the non carrier added ⁶⁴Cu via ⁶⁴Ni(p,n) reaction.

To avoid excessive investment in a gold target carrier, a good practice is to coat the copper target carrier with a thin inert material, i.e. 5-6 µm of gold, followed by electrodeposition of the ⁶⁴Ni target layer. In that way, the cross contamination of the noncarrier added ⁶⁴Cu with the copper present in the target carrier is excluded. In general the irradiations are performed with protons having incident energy of about 15 MeV, and, depending on irradiation condition, may lead to curie amount of induced activity of ⁶⁴Cu. To reduce the thickness of the ⁶⁴Ni target layer, and, as consequence, to minimize the problems related with the plating and dissolution of the target layer, a low beam/target angle geometry (6 degrees) is desired. Nevertheless, the separation of target / activation product is required. Upon irradiation, our chemistry system proposes the dissolution of the ⁶⁴Ni layer in a heated flow trough stripper by means of diluted nitric acid. Next, the non carrier added ⁶⁴Cu is selective extracted into benzene (containing 0.1 M benzoylacetone) at pH 4.5, leaving the enriched ⁶⁴Ni and possible Co induced isotopes in the inorganic phase. The back extraction of ⁶⁴Cu is done in a small volume of diluted hydrochloric acid (6 N). The final purification step is achieved using an anion exchange column Dowex 1X8. Finally, the NCA ⁶⁴Cu is eluted with a small volume (10 ml), diluted hydrochloric acid (1 N).

The overall yield of the chemistry is estimated as being higher than 95% with a short total chemistry time, less than 2 hours, while the gold plated target carriers can be reused as long as the thin gold layer remains intact, meaning that scratches and cracking by careless handling are avoided.