Cyclotron Production of 99mTc

A. Zyuzin1, B. Guérin1, E. van Lier1, S. Tremblay2, S. Rodrigue2, J.A. Rousseau2, V. Dumulon-Perreault2, R. Lecomte2, J.E. van Lier2

1Advanced Cyclotron Systems Inc., Richmond, BC, Canada
2Sherbrooke Molecular Imaging Center, Université de Sherbrooke, QC, Canada

Introduction. Current global interruptions of 99mMo supply, aging reactors, and the staggering costs of their maintenance have accelerated the search for alternative sources of 99mTc. Direct production of 99mTc via 100Mo($p,2n$)99mTc nuclear reaction can be considered as one of such alternatives. The feasibility of 99mTc production with a cyclotron was first demonstrated in 1971 by Beaver and Hupf and confirmed by a number of researchers. Measured yields indicate that up to 2.1 TBq (56 Ci) of 99mTc can be produced in 12 h using a 500 μA 24 MeV cyclotron. This amount will be sufficient to cover population base of 5-7 million assuming: 15% 99mTc losses, an average injected dose of 25 mCi and a 10 hrs decay. Initial results of the target development and thick target yields are presented in the “Mo-100 development for direct Tc-99m Production” abstract. In this work we compared the chemical and radiochemical properties and in vivo behavior of cyclotron- and generator-produced 99mTc.

Experiment. Targets, 6-mm diameter discs, were prepared by melting 100Mo pellets (99.54% enrichment) onto tantalum backing supports. Targets were bombarded for 1.5–3 h with 14.5–17.0 MeV protons (14–52 μA), using a TR-19 cyclotron (ACSI). After bombardment, 100Mo targets were partially dissolved and purified by the method of Chattopadhyay et al. The radionuclide purity of the 99mTc was >99.9%, as assessed by γ-spectroscopy, exceeding USP requirements for generator-based 99mTc. Although small peaks corresponding to 99Mo were observed in the initial solute, these were not detectable in the purified 99mTc-pertechnetate solution. Minute amounts of 97Nb were also quantitatively separated from during target processing. The content of other technetium isotopes was measured after allowing sufficient time (4 days) for 99mTc decay. The presence of 0.0014% 98Tc and 0.0010% 95Tc at the end of bombardment, was below USP requirements of 0.01% for generator-produced 99mTc. No other radionuclidic impurities were found. The radiochemical purity of cyclotron-produced $[^{99m}\text{Tc}]\text{TcO}_4^-$, as determined by instant thin-layer chromatography was >99.5%, well above the USP requirement of 95%. The content of ground state 99Tc ($T_{1/2} = 2.1 \times 10^5$ years) was not determined in these experiments and is one of the tasks for future work. For imaging studies, both cyclotron- and generator-produced 99mTc were formulated as 3 different radiopharmaceuticals: 99mTc-pertechnetate for thyroid imaging, 99mTc-methylene diphosphonate (99mTc-MDP) for bone scanning, and 99mTc-hexakis-2-methoxyisobutyl isonitrile (99mTc-MIBI) for heart imaging. These radiopharmaceuticals account for more than 75% of all routine 99mTc scans currently used in diagnostic nuclear medicine. The latter two radiopharmaceuticals were prepared using commercially available kits. Labeling efficiency for the bone imaging agent 99mTc-MDP and heart imaging agent 99mTc-MIBI were 98.4% and 98.0%, respectively, well above USP requirements of >90%.

Animal Scans. The bio-distributions of 99mTc-pertechnetate, 99mTc-MDP, and 99mTc-MIBI, prepared with either cyclotron- or generator-produced 99mTc, were assessed in a healthy rat model. For each experiment 2 animals were simultaneously injected with a 0.3-mL physiologic saline solution containing 34–90 MBq of the selected 99mTc-radiopharmaceutical, prepared either with cyclotron- or generator-produced 99mTc. Dynamic acquisitions were continued over a 2 h period. At the end of scanning, the rats were killed and dissected to...
measure activities of target tissues. Static images obtained 2 h after administration of each of these
99mTc-radiopharmaceuticals show matching 99mTc distribution patterns, clearly delineating the
thyroid with 99mTc-pertechnetate, skeleton with 99mTc-MDP, and heart with 99mTc-MIBI (Fig. 1). Uptake kinetics calculated over the target organs (thyroid, bones, and heart), show identical uptake
patterns for the cyclotron- and generator-produced 99mTc-radiopharmaceuticals (Fig. 2). Tissue
activities from dissected samples collected 30 min after the end of imaging with 99mTc-MDP and 99mTc-MIBI also show matching patterns between cyclotron- and generator-derived 99mTc preparations (Fig. 3).

Figure 2. Time/radioactivity curves derived from regions of interest drawn around target organs (Fig.1) Dotted line: cyclotron-produced 99mTc, Solid line: generator produced 99mTc. Radioactivity is expressed as percentage of injected dose per unit area, corrected for radioactive decay.

Figure 3. Tissue uptake in healthy rats, expressed as percentage of injected dose per gram of tissue, 2.5 h after intravenous injection of 34 MBq of 99mTc-MDP or 15 MBq of 99mTc-MIBI, prepared from cyclotron-produced 99mTc (open bars) or generator-produced 99mTc (solid bars).

Conclusion. The results of these in vivo experiments and quality control tests support the concept that cyclotron-produced 99mTc is suitable for preparation of USP-compliant 99mTc radiopharmaceuticals. Establishing decentralized networks of medium energy cyclotrons capable of producing large quantities of 99mTc may effectively complement the supply of 99mTc traditionally provided by nuclear reactors, at a fraction of the cost of a single nuclear reactor production facility, while sustaining the expanding need for other medical isotopes, including short-lived positron emitters for PET imaging.

5. Lebeda, O. et al. New measurement of excitation functions for (p,x) reactions on 96Mo with special regard to the formation of 99mTc, $^{96m+g}$Tc, 99mTc and 99Mo. Appl. Radiat. Isot., in press