# Target Performance – [<sup>11</sup>C]CO<sub>2</sub> and [<sup>11</sup>C]CH<sub>4</sub> Production

# Semi Helin<sup>1</sup>, Eveliina Arponen<sup>1</sup>, Johan Rajander<sup>2</sup>, Jussi Aromaa<sup>2</sup>, Olof Solin<sup>1,2</sup>

Turku PET Centre, University of Turku<sup>1</sup> and Åbo Akademi University<sup>2</sup>, Turku, Finland

### Introduction

A systematic investigation on  $N_2$  (0.1 %  $O_2$ ) and  $N_2$  (5 %  $H_2$ ) target performances is presented in terms of saturation yields as function of target body temperature and irradiation current.

## Materials and methods

Identical aluminium target bodies were used for both [ $^{11}C$ ]CO<sub>2</sub> and [ $^{11}C$ ]CH<sub>4</sub> productions. The conical chambers measured 11.2 x 90.0 x 19.4 mm (front I.D. x length x back I.D.) and 16.9 cm<sup>3</sup>. The inlet foil was supported by a metallic grid having a transparency of ~ 70 %. In all irradiations the chambers were loaded at 20 °C to 35 bar pressure and irradiated for 20 minutes. Variable parameters were the target body temperature (10, 40, 70 °C), regulated with a cooling fluid circuit and a heat exchanger, and the irradiation current (10, 20, 30, 40 µA). For the data points n = 2. The proton beam was generated with a fixed energy (17 MeV) negative ion cyclotron (CC 18/9, D.V. Efremov Scientific Research Institute of Electrophysical Apparatus, St. Petersburg, Russia).

The irradiation product was directed to a hot cell via a capillary and valve arrangement and a mass flow controller. The main <sup>11</sup>C-species was first separated from the target gas using a selective trap: Porapak N column in Ar(Liq) for the [<sup>11</sup>C]CH<sub>4</sub> and an Ascarite column at room temperature for the [<sup>11</sup>C]CO<sub>2</sub>. The traps were placed in a dose calibrator and the irradiated gas that passed a trap was collected as gas. The collected volume was readable from the gas trap and an aliquot could be taken for radioactivity measurement.

The <sup>11</sup>C main product yield was thus measured on-line with the dose calibrator containing the first trap. The content of <sup>11</sup>C and <sup>13</sup>N in the second trap was determined by iterating the decay curve fitting to the radioactivity values at early and late time points. Yields for the <sup>11</sup>C main product and <sup>11</sup>C and <sup>13</sup>N by-products were calculated as saturation activities (A<sub>sat</sub> [GBq/microA]).



Figure 1. Pressure versus irradiation current at different target body temperatures

#### Results

The pressure increase as function of beam current was similar for both targets (figure 1). A slight difference was observed at higher currents.

The main component yield is practically constant for the  $[^{11}C]CO_2$  (figure 2, pane A) across the range of varied target body temperature and irradiation current. The  $[^{11}C]CH_4$  yield (figure 2, pane B) is directly proportional to the temperature and inversely proportional to the current.

[<sup>11</sup>C]CO generation in the N<sub>2</sub> (0.1 % O<sub>2</sub>) target is low and inversely proportional to temperature and constant across the investigated current range. [<sup>11</sup>C]by-product generation is negligible in the N<sub>2</sub> (5 % H<sub>2</sub>) target.

<sup>13</sup>N generation is constant across the range of current and temperature using either N<sub>2</sub> (0.1 % O<sub>2</sub>) or N<sub>2</sub> (5 % H<sub>2</sub>) target gases. However, <sup>13</sup>N production is slightly lower for the N<sub>2</sub> (5 % H<sub>2</sub>) target.



Figure 2. Yield of the main component as a function of irradiation current at 10 – 70 °C.

#### Conclusions

Production of [<sup>11</sup>C]CO<sub>2</sub> is practically independent of the irradiation current and the target body temperature, whereas [<sup>11</sup>C]CH<sub>4</sub> production was found to be strongly dependent on the current and target body temperature.

#### Acknowledgement

The study was conducted within the "Finnish Centre of Excellence in Molecular Imaging in Cardiovascular and Metabolic Research" supported by the Academy of Finland, University of Turku, Turku University Hospital and Åbo Akademi University.

#### References

Ache HJ and Wolf AP, (1966), Reactions of energetic carbon atoms with nitrogen molecules, *Radiochim Acta*, 6, pp. 32-33.

Ache HJ and Wolf AP, (1968), The effect of radiation on the reactions of recoil carbon-11 in the nitrogen-oxygen system, *J Phys Chem*, 72, pp. 1988–1993.

Buckley KR, Huser J, Jivan S, Chun KS and Ruth TJ, (2000), <sup>11</sup>C-methane production in small volume, high pressure gas targets. *Radiochim Acta*, 88, pp. 201–205

Buckley KR, Jivan S, Ruth TJ, (2004), Improved yields for the in situ production of [<sup>11</sup>C]CH<sub>4</sub> using a niobium target chamber, *Nucl Med Biol*, 31, pp. 825-827