Mass Production of ⁶⁴Cu with ⁶⁴Ni(p,n)⁶⁴Cu Nuclear Reaction

Kwon Soo Chun*, Hyun Park, Jaehong Kim

Korea Institute of Radiological and Medical Sciences, Seoul, Korea

* Corresponding author: kschun@kcch.re.kr

Introduction

⁶⁴Cu (T_{1/2} = 12.7h, β⁻ decay: 40%, β⁺ decay: 19%, E.C. decay: 41%) is one of the most useful radioisotope in nuclear medicine due to its multiple decay mode and the intermediate half-life. Several nuclear reactions, i.e., ⁶⁴Ni(p,n)⁶⁴Ni, ⁶⁸Zn(p,αn)⁶⁴Cu and ⁶⁴Ni(d,2n)⁶⁴Cu have been investigated for ⁶⁴Cu production[1,2]. The highest production yield could be obtained with proton irradiation on the enriched ⁶⁴Ni target. Therefore for mass and routine production, the ⁶⁴Ni target fabrication by using electroplating[3], the reliable chemical separation of ⁶⁴Cu from the irradiated ⁶⁴Ni target and the effective recovery process for the recycling of very expensive enriched material (⁶⁴Ni enrichment : 96%, \$20,000/g) and so on are absolutely necessary to be established. In this work, we report our mass production method of ⁶⁴Cu with enriched ⁶⁴Ni and Cyclone-30 accelerator.

Methods

⁶⁴Cu was produced with high current cyclotron via ⁶⁴Ni(p,n)⁶⁴Cu nuclear reaction at 200μA, 18MeV proton beam. Nickel target was prepared by electro-plating of enriched ⁶⁴Ni (25% of enrichment) on Au coated Cu cooling plate. After proton beam irradiation, Ni target was dissolved with circulation of 50ml of 5N HCl on the dissolving device (home made) and 90°C heating. Water was added to ⁶⁴Ni solution to dilute the normality of hydrochloric acid to 0.5N. Radiochemical separation of ⁶⁴Cu from Ni target solution was performed with 0.01% dithizone in CCl₄ solvent extraction and back extraction with 7N HCl[4]. Purification of back extracted ⁶⁴Cu solution was carried out with AG1-x8 (Bio-Rad) anion exchange resin. For ⁶⁴Ni recycling, ⁶⁴Ni from the aqueous phase of solvent extraction and the electrolyte of electroplating was recovered by using AG1-x8 anion and AG50w-x8 (Bio-Rad) cation resin[5].

Results

With the electroplating cell designed by ourselves and the electrolyte, consisting of 1.5g 64 Ni(25% enrichment), 1.0g boric acid and 2.0g NaCl in 90ml distilled water, the smooth and uniformed Ni target (thickness : > 50mg/cm², area: 1 x 10cm²) was obtained with applying 200mA of constant current on the cathode for 5hrs. The cathode current efficiency was about 50%. There was no damage on Ni surface during more than 200µA proton beam irradiation. The chemical separation yield of 64 Cu with solvent extraction and anion exchange resin was more than 90% and the radionuclidic purity was more than 99% 1 day after bombardment. The 64 Ni recovery yield was quantitative and measured with 57 Ni activity produced with 58 Ni(p,2p) 57 Ni nuclear reaction and AA spectroscopy.

Conclusion

⁶⁴Cu production yield was about 9mCi/μAh corrected on 96% enrichment at EOB with ⁶⁴Ni(p,n)⁶⁴Cu nuclear reaction and Cyclone-30. The chemical separation yield and the radionuclidic purity of the final ⁶⁴Cu solution was more than 90% and 99%, respectively. The ⁶⁴Ni recovery yield performed with ion exchange resin was more than 98%.

References

[1] V.S. Smith, Molecular Imaging with Copper-64, J. Inorg. Biochem., Vol. 98, p.1874-1901, 2004

[2] F. Szelecscenyi, G. Blessing and S.M. Qaim, Excitation Functions of Proton Induced Nuclear Reactions on Enriched ⁶¹Ni and ⁶⁴Ni: Possibility of Production of No-carrier-added ⁶¹Cu and ⁶⁴Cu at a small Cyclotron, Appl. Radiat. Isot., Vol.44, p575-580, 1993

[3] IAEA Technical Report Series No. 432. "Standardized High Current Solid Targets for Cyclotron Production of Diagnostic and Therapeutic Radionuclieds" IAEA, Vienna, 2004

[4] A.K. Dasgupta, L.F. Mausner and S.C. Srivastava, A New Separation Procedure for 67Cu from Proton Irradiated Zn, Appl. Radiat. Isot. Vol. 42, p.371-376, 1991

[5] N. Saito, Selected data on ion exchange separations in Radioanalytical Chemistry, Pure & Appl. Chem., Vol. 56, p.523-539, 1984