Organic Liquid targets for the production of ¹²³I and ⁷⁷Br ## J.A. Osso, R. Bett, H.E. Sims #### AERE, Harwell, Didcot, Oxon, England #### Introduction 123I and ⁷⁷Br are made indirectly by the production of ¹²³Xe and ⁷⁷Kr respectively, using flowing CH₂I₂/I₂ or CHBr₃ targets. A schematic of the targetry is shown in figure 1 and the target can be seen in figure 2. The stripping gas passes through the following traps: - cold trap to remove volatile products - silver zeolite to remove halogens and C₂H₂ - if necessary CuO/CaCl₂/soda-lime to remove CH₄, C₂H₄, etc. The product is then trapped at 71 K. | Reaction | $^{127}I(p,5n)^{123}Xe -> ^{123}I$ | 79 Br(p,3n) 77 Kr -> 77 Br | |--------------|--|--| | Target | CH_2I_2/I_2 | CHBr ₃ | | Volume | 800/600 ml | 280 ml | | Energy | 60-45 MeV | 41-21 MeV | | Current | up to 60 μA | up to 20 μA | | Temperature | < 50°C | 55°C | | Target Power | 900 watts | 400 watts | | Yields | 123Xe: 1.7 mCi/μAh
125Xe: 3.7 mCi/μAh
123I: 11.0 mCi/μAh
< 0.2 % of ¹²⁵ I* | 77Kr: 47.544 mCi/μAh 76Kr: 0.088 mCi/μAh 77Br: 1.154 mCi/μAh 1.67 % of ⁷⁶Br* | | | * after 6 h decay | * after 7 h decay | #### **Advantages** High yields: continuous removal of 123 Xe and 77 Kr lead to high yields and lower impurity levels (125 I and 76 Br). High currents: despite their complexity much higher currents may be used on flowing liquid targets than molten targets (e.g. Davis Labs: 15-20 μ A molten NaI). ### Disadvantages 98 The following properties give rise to problems: - both target materials are corrosive, and these corrosive properties are enhanced during irradiation. This necessitates a titanium target body and window, and titanium/glass/PTFE or Viton components. Even so, under some circumstances (e.g. elevated temperatures) titanium may corrode in figure 3. - Doses of the order of 10⁵MegaRads an hour also lead to radiolysis of the liquids: Radiolysis products CH₂I₂: CHBr₃: I₂, HI Br₃, HBr CH₄, C₂H₄, C₂H₆, C₂H₂ Saturated and unsaturated aliphatic halides figure 4 CHBr₃: CHBr₃: CH₄, C₂H₄, C₂H₆, C₂H₂, CHBr₃(gas) Saturated and unsaturated aliphatic halides figure 5 The I₂ and Br₂ stop polymerisation reactions which would also be a problem. Volatile products have to be removed from the gas stream otherwise final traps block and recoil labelling occurs during the decay of ¹²³Xe or ⁷⁷Kr causing significant product loss. A typical trapping sequence is shown below. - considerable maintenance and setting up time. Fig. 6: Diagram of the trapping sequence used to purify 123 Xe and 77 Kr. EQUIPMENT USED TO IRRADIATE CH212/12 WITH PRCTOMS. KENON AS SOLID. GAS STREAM AND TRAP THE FIG. 1. SCHEMATIC DIAGRAM OF THE 123Xe FORMED, PURIFY THE SEPARATE Fig.2 : Exploded view of the target used for the production of ^{123}I and Fig.3 : Corrosion of the titanium target body by the liquid target Fig. 4: Production of ethylene during the irradiation of $\mathrm{CH_2I_2/I_2}$ Fig.5: Production of organic gases during the irradiation of CHBr,