Organic Liquid targets for the production of ¹²³I and ⁷⁷Br

J.A. Osso, R. Bett, H.E. Sims

AERE, Harwell, Didcot, Oxon, England

Introduction

123I and ⁷⁷Br are made indirectly by the production of ¹²³Xe and ⁷⁷Kr respectively, using flowing CH₂I₂/I₂ or CHBr₃ targets. A schematic of the targetry is shown in figure 1 and the target can be seen in figure 2.

The stripping gas passes through the following traps:

- cold trap to remove volatile products

- silver zeolite to remove halogens and C₂H₂

- if necessary CuO/CaCl₂/soda-lime to remove CH₄, C₂H₄, etc. The product is then trapped at 71 K.

Reaction	$^{127}I(p,5n)^{123}Xe -> ^{123}I$	79 Br(p,3n) 77 Kr -> 77 Br
Target	CH_2I_2/I_2	CHBr ₃
Volume	800/600 ml	280 ml
Energy	60-45 MeV	41-21 MeV
Current	up to 60 μA	up to 20 μA
Temperature	< 50°C	55°C
Target Power	900 watts	400 watts
Yields	123Xe: 1.7 mCi/μAh 125Xe: 3.7 mCi/μAh 123I: 11.0 mCi/μAh < 0.2 % of ¹²⁵ I*	 77Kr: 47.544 mCi/μAh 76Kr: 0.088 mCi/μAh 77Br: 1.154 mCi/μAh 1.67 % of ⁷⁶Br*
	* after 6 h decay	* after 7 h decay

Advantages

High yields: continuous removal of 123 Xe and 77 Kr lead to high yields and lower impurity levels (125 I and 76 Br).

High currents: despite their complexity much higher currents may be used on flowing liquid targets than molten targets (e.g. Davis Labs: 15-20 μ A molten NaI).

Disadvantages

98

The following properties give rise to problems:

- both target materials are corrosive, and these corrosive properties are enhanced during irradiation. This necessitates a titanium target body and window, and titanium/glass/PTFE or Viton components. Even so, under some circumstances (e.g. elevated temperatures) titanium may corrode in figure 3.
- Doses of the order of 10⁵MegaRads an hour also lead to radiolysis of the liquids:

Radiolysis products

CH₂I₂:

CHBr₃:

I₂, HI

Br₃, HBr

CH₄, C₂H₄,

C₂H₆, C₂H₂

Saturated and unsaturated

aliphatic halides

figure 4

CHBr₃:

CHBr₃:

CH₄, C₂H₄, C₂H₆,

C₂H₂, CHBr₃(gas)

Saturated and unsaturated

aliphatic halides

figure 5

The I₂ and Br₂ stop polymerisation reactions which would also be a problem. Volatile products have to be removed from the gas stream otherwise final traps block and recoil labelling occurs during the decay of ¹²³Xe or ⁷⁷Kr causing significant product loss. A typical trapping sequence is shown below.

- considerable maintenance and setting up time.

Fig. 6: Diagram of the trapping sequence used to purify 123 Xe and 77 Kr.

EQUIPMENT USED TO IRRADIATE CH212/12 WITH PRCTOMS. KENON AS SOLID. GAS STREAM AND TRAP THE FIG. 1. SCHEMATIC DIAGRAM OF THE 123Xe FORMED, PURIFY THE SEPARATE

Fig.2 : Exploded view of the target used for the production of ^{123}I and

Fig.3 : Corrosion of the titanium target body by the liquid target

Fig. 4: Production of ethylene during the irradiation of $\mathrm{CH_2I_2/I_2}$

Fig.5: Production of organic gases during the irradiation of CHBr,